

GOVERNO DO ESTADO DE MATO GROSSO DO SUL SECRETARIA DE ESTADO DE EDUCAÇÃO E.E. Aracy Eudociak

Química - Unidade 5 de 12:

- ☐ Conteúdo 10: Dispersões (definição, classificação, e características)
- ☐ Habilidade e competência: ·Identificar a diferença entre dispersões, solução e suspensão.

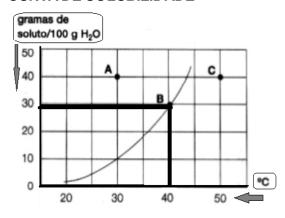
DISPERSÕES: São a união de duas ou mais espécies químicas de tal forma que uma se distribui no interior da outra. Classificação das dispersões: (1 nm = 10⁻⁹m)

Classificação	Solução	Colóide Suspensão	
Exemplo:	açúcar na água, sal de cozinha na água, álcool hidratado.	maionese, shampoo, leite de magnésia, neblina, gelatina na água, leite, creme.	terra suspensa em água, hidróxido de alumínio.

- ☐ Conteúdo 11: Soluções (conceito, curvas de solubilidade)
- ·Compreender o conceito de uma solução no contexto da Química e sua relação com o dia a dia.
- ·Entender que a variação da temperatura influência a solubilidade das substâncias químicas.

SOLUÇÕES

HTTP://PT.SLIDESHARE.NET/EQUARENSINOMEDIO/WWWEQUARPARAENSINOMEDIOCOMBR-QUMICA-DISPERSES-E-SOLUES


Solução é todo sistema monofásico que apresenta dois ou mais componentes. Ou uma mistura homogênea de duas ou mais substâncias.

Nas soluções, o disperso recebe o nome de soluto e o dispergente é chamado de solvente Assim, na solução de cloreto de sódio em água, a água é o solvente e o cloreto de sódio é o soluto.

SOLUBILIDADE

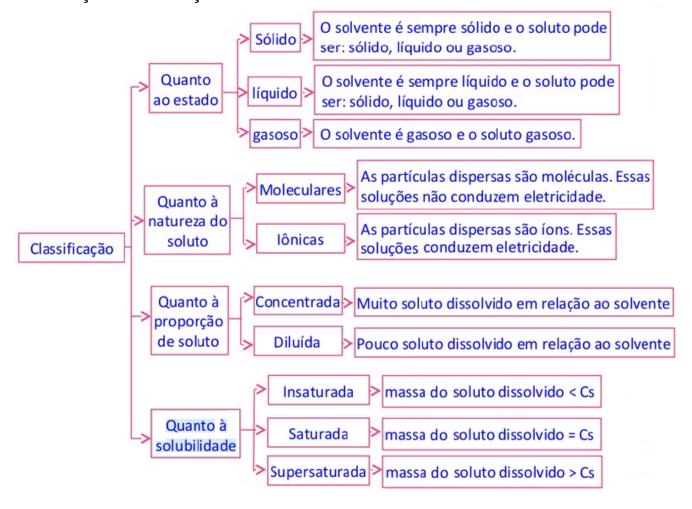
É a quantidade máxima de uma substância (soluto) que pode ser dissolvida, em uma quantidade padrão de solvente. Definida e calculada como uma constante de solubilidade (Cs).

CURVA DE SOLUBILIDADE

É a representação gráfica da solubilidade desta substância em função da temperatura.

Através da análise deste gráfico, você pode concluir:

- a solubilidade das substâncias aumenta à medida que aumenta a temperatura:
- substâncias diferentes se dissolvem em quantidades diferentes, em uma mesma quantidade de solvente, na mesma temperatura.


OBSERVAÇÕES:

1) Para encontrarmos a solubilidade de uma substância, a partir do gráfico de solubilidade, basta traçarmos, a partir do eixo das abscissas, uma paralela ao eixo das ordenadas, até encontrarmos a curva de solubilidade da substância. O valor da solubilidade

será encontrado no eixo das ordenadas.

2) Duas substâncias podem ter uma mesma solubilidade, em uma dada temperatura, porém nunca terão a mesma curva de solubilidade: Portanto, as curvas de solubilidade têm grande importância prática, uma vez que caracterizam substâncias puras.

CLASSIFICAÇÃO DAS SOLUÇÕES

GOVERNO DO ESTADO DE MATO GROSSO DO SUL SECRETARIA DE ESTADO DE EDUCAÇÃO

E.E. Aracy Eudociak

Exemplos:

soluções moleculares: açúcar,(C₁₂H₂₂O₁₁) CO2,

solução iônica: NaCl, KCl

solução concentrada: groselha, sucos concentrados

solução diluída:solução insaturada: soro fisiológico, soro caseiro

solução saturada: 357g NaCl em 100g de água (Cs de NaCl = 357g/100g água)

solução supersaturada: 570g NaCl em 100g de água solução insaturada: 300g NaCl em 100g de água

Soluções Importantes no Cotidiano:

Ácido Acético	Ácido Acético a 4%	Temperar alimentos
Álcool Hidratado	Hidratado 96%	Álcool doméstico, empregado na em limpeza
Soda Cáustica	NaOH (líquido)	Remoção de crosta de gorduras e fabricação de sabão
Soro Fisiológico	NaCl (aquoso) 0,9%	Medicina e limpeza de lentes de contato
Formol	Metanal 40%	Conservação de tecido animal
Aliança de ouro	Ouro 18 quilates	Joalheria
Água Sanitária	Hipoclorito de sódio a 5%	Bactericida e alvejante

- ☐ Conteúdo12: Concentração das Soluções (concentração comum, molaridade ou concentração em mols por litro e título ou fração em massa).
- ·Compreender o conceito de uma solução no contexto da Química e sua relação com o dia a dia.
- Entender que a variação da temperatura influência a solubilidade das substâncias químicas.
- compreender que as relações matemáticas são necessárias para trabalhar com concentração de soluções no dia a dia.

CONCENTRAÇÃO DAS SOLUÇÕES

Para preparar uma solução aquosa de simeticona (um medicamento indicado para gases), de tal forma que esta solução apresente 75g e um volume de 1 litro. Para isto, você deverá obedecer a esta sequência:

- determinar a massa de simeticona a ser dissolvida (75g);
- colocar a massa (75g) do soluto (simeticona) em um balão volumétrico, com capacidade para 1L;
- adicionar água e agitar o sistema, até que todo o soluto se dissolva;
- completar o volume, adicionando água até que se atinja o volume desejado (1L).

Assim, vamos apresentar algumas características da solução, tais como:

- massa do soluto (75g);
- volume final da solução (1L);
- volume e massa do solvente adicionado;
- massa da solução, que você pode obter somando as massas do soluto e do solvente.

Concentração de uma solução é toda e qualquer forma de se expressar a proporção existente entre as quantidades de soluto e de solvente ou de soluto e de solução.

Massa atômica (A) é a massa média ponderada dos elementos de um determinado elemento químico encontrado na natureza.

Massa molecular (MM) é a massa do constituinte de uma substância, podendo representar a massa de uma molécula ou de uma fórmula mínima.

Massa molar (M) é a massa de um mol da substância.

GOVERNO DO ESTADO DE MATO GROSSO DO SUL SECRETARIA DE ESTADO DE EDUCAÇÃO E.E. Aracy Eudociak

RELAÇÃO ENTRE A MASSA DE SOLUTO E O VOLUME DA SOLUÇÃO

Na solução de simeticona, com 75g de soluto para 1L de solução. A relação entre a massa do soluto e o volume da solução é igual a 75 gramas por Litro. Esta relação recebe o nome de <u>concentração comum</u> ou apenas <u>concentração</u> e pode ser definida da seguinte forma:

Concentração comum (C) de uma solução é a relação (quociente) entre a massa do soluto (em gramas) e o volume da solução (geralmente em litros).

FÓRMULA MATEMÁTICA:	UNIDADES
C = <u>m</u> _	Gramas por litro (g/L)
V	Gramas por centímetros cúbicos (g/cm³)
	Gramas por mililitro (g/mL).

Vamos dividir a solução de simeticona preparada, em quatro recipientes, contendo respectivamente: 0,1L, 0,2L, 0,3L e 0,4L. Calculando a massa de soluto presente na solução de cada recipiente e as respectivas concentrações comuns, temos:

Recipiente 1: 1,0 L _75 g	Recipiente 3: 1,0 L 75 g	
0,1 L _ m _s	0,3 L m _s	
logo: $1.0 \text{xm}_s = 75 \text{ gx} 0.1$ $\text{m}_s = 7.5 \text{g do soluto}$	logo: $1,0xm_s=75 gx0,3 m_s=22,5g de soluto$	
Então: C = <u>7,5</u> = <u>75 g/L</u>	Então: C = <u>22,5</u> = <u>75 g/L</u>	
0,1	0,3	
Recipiente 2: 1,0 L 75 g	Recipiente 4: 1,0 L 75 g	
0,2 L m _s	0,4 L m _s	
logo: $1.0 \text{xm}_s = 75 \text{ gx} 0.2$ $\text{m}_s = 15 \text{g de soluto}$	Logo: $1.0 \text{xm}_s = 75 \text{ gx} 0.4$ $\text{m}_s = 30 \text{g de soluto}$	
Então: C = <u>15</u> = <u>75 g/L</u>	Então: C = <u>30</u> = <u>75 g/L</u>	
0,2	0,4	

Vamos calcular a concentração de medicamentos:

GOVERNO DO ESTADO DE MATO GROSSO DO SUL SECRETARIA DE ESTADO DE EDUCAÇÃO E.E. Aracy Eudociak

RELAÇÃO ENTRE A MASSA DA SOLUÇÃO E O SEU VOLUME

A densidade (d) de uma solução pode ser definida da seguinte forma:

Densidade de uma solução é a relação (quociente) entre a sua massa e o volume ocupado pela solução.

FÓRMULA MATEMÁTICA: d = m	UNIDADES: Gramas por litro (g/L)
V	Gramas por centímetros cúbicos (g/cm³)
	Gramas por mililitro (g/mL).

RELAÇÃO ENTRE O NÚMERO DE MOLS DO SOLUTO E O VOLUME DA SOLUÇÃO EM LITROS

Observe o esquema, a seguir, que nos mostra o preparo de uma solução aquosa de cloreto de potássio. Nesta fórmula: m = massa do soluto (g), Ms = massa molar do soluto (g/mol)

Molaridade (M) de uma solução é a relação (quociente) entre o número de mols do soluto (n_s) e o volume (V) da solução (em litros).

FÓRMULA MATEMÁTICA: M =	<u>ns</u> n= <u>n</u>	<u>1</u>	UNIDADES
	V N	IM I	Mols por litro (mol/L)

Temos 149g de massa do soluto KCl, que será misturada em 1Litro de água. Qual será o valor de M (a concentração molar dessa solução? Antes precisamos calcular o valor de ns utilizando a massa (m) e a massa molecular (MM) do soluto KCl. (dados os valores de A: K=39g e Cl= 35,5g)

Podemos, então, concluir que a molaridade indica o <u>número de mols do soluto existente em cada litro de solução.</u>

Título (τ) e Percentual (%)

É a relação entre soluto e solvente de uma solução dada em percentual (%).O título não possui unidade. É adimensional. Ele varia entre 0 e 1. e o percentual varia de 0 a 100.

Título em massa:
$$\% = \frac{m_1}{m} \cdot 100$$
Título em volume: $\% = \frac{V_1}{V} \cdot 100$

$$\tau = \underline{m1}$$
 ou $\tau = \underline{m1}$ $\tau = \underline{v1}$ ou $\tau = \underline{v1}$ Para encontrar o valor percentual: % = 100. τ m(sç) m1+ m2 v(sç) v1+ v2

Exemplo: calcule o valor de τ (título) para:

- a) NaCl 20,3% = 20,3g em 100g de solução
- b) 46% de etanol = 46mL de etanol em 100mL de solução (v/v)

This document was created with Win2PDF available at http://www.win2pdf.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only. This page will not be added after purchasing Win2PDF.